Infinite Operator-Sum Representation of Density Operator for a Dissipative Cavity with Kerr Medium Derived by Virtue of Entangled State Representation
نویسندگان
چکیده
منابع مشابه
A finite-sum representation for solutions for the Jacobi operator
We obtain a finite-sum representation for the general solution of the equation ∆ (p(n− 1)∆u(n − 1)) + q(n)u(n) = λr(n)u(n) in terms of a nonvanishing solution corresponding to some fixed value of λ = λ0. Applications of this representation to some results on the boundedness of solutions are given as well as illustrating examples.
متن کاملGaussian quantum operator representation for bosons
We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-...
متن کاملThermal Operator Representation of Finite Temperature Graphs
F. T. Brandt, Ashok Das, Olivier Espinosa, J. Frenkel and Silvana Perez a Instituto de F́ısica, Universidade de São Paulo, São Paulo, BRAZIL b Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171, USA c Departamento de F́ısica, Universidad Técnica Federico Santa Maŕıa, Casilla 110-V, Valparáıso, CHILE and d Departamento de F́ısica, Universidade Federal do Pa...
متن کاملq-Differential Operator Representation of the Quantum
A representation of the quantum superalgebra Uq(sl(M + 1|N + 1)) is constructed based on the q-differential operators acting on the coherent states parameterized by coordinates. These coordinates correspond to the local ones of the flag manifold. This realization provides us with a guide to construct the free field realization for the quantum affine superalgebra Uq(ŝl(M + 1|N + 1)) at arbitrary...
متن کاملThermal Operator Representation of Feynman Graphs
In this talk I describe an interesting relation between Feynman graphs at finite temperature and chemical potential and the corresponding ones at zero temperature. The operator relating the two which we call the “thermal operator”, simplifies the evaluation of finite temperature graphs and helps in understanding better several physical questions such as cutting rules, forward scattering, gauge ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Theoretical Physics
سال: 2009
ISSN: 0020-7748,1572-9575
DOI: 10.1007/s10773-009-0144-5